
The definitive feature
flagging guide for progressive

software delivery

An Atlassian buyer’s guide

48PT

WHY READ THIS GUIDE?

Connecting and implementing feature flags to Jira Software
gives your team immediate insight into the release status
of your work and helps you monitor the rollout of new
features.

You can use this guide to understand more about feature
flags and the critical business considerations to make when
implementing or deciding what feature flag integration to
go with.

We collaborated with the partners behind some of our
favorite feature flag solutions to put this guide together
so you can get practical tips on how to evaluate and
implement feature flags for your team’s software
development practices.

Table of contents

3 What is a feature flag?

6 Work with a trusted feature flag expert

7 Harness

13 LaunchDarkly

18 Split

THE DEFINITIVE FEATURE FLAGGING GUIDE 3

What’s a feature flag?
Feature flagging is an emerging best practice used by modern software
teams. It offers a new way to get immediate feedback directly from your users,
signaling when a feature is ready to deploy.

In its simplest definition, a feature flag, also known as a feature toggle, is “just
an if/else statement.” However, this definition is deceptively simple.

Let’s dive In.

New feature Feature Flags Customers

Feature flagging is a versatile technique that can be used for various purposes.
As a result, the definition of a feature flag can vary depending on who you ask.
At its core, the feature flagging concept remains the same: a way to change an
application’s behavior at runtime without changing the application [code].

As mentioned above, a feature flag is a thoughtfully placed if/else statement
used to change the behavior of your application in runtime without deploying.

THE DEFINITIVE FEATURE FLAGGING GUIDE 4

 During development, software engineers wrap desired code paths in a feature
flag. The following is an example of a basic feature flag written in Javascript:

This code demonstrates a simple statement that checks if a “new-cool-
feature” is enabled. Even with advanced frameworks and tools that help
manage flag data or injection and removal of the new logic path, feature flags
are essentially just “if statements.”

Why use feature flags?
Reduce risk

By separating code deployments from feature releases, teams benefit
from increased control over the experience they deliver to customers.

Build a tighter feedback loop

Feature flags initially enable software teams to release to a small set of
users. Then, they can collect customer feedback and choose to scale up or
adjust their strategy.

Roll back features with ease

In case of a bug or if a new feature gets a lot of negative feedback,
feature flags can serve as a kill switch, enabling you to easily roll back an
update with no code changes.

THE DEFINITIVE FEATURE FLAGGING GUIDE 5

Things to consider
Technical complexity

Many teams opt to build feature flagging solutions in-house, which can
add technical complexity, making products more difficult to support and
debug. There are many options for feature flagging on the market today
that can do the heavy lifting for you, including Harness, LaunchDarkly,
and Split.

Messy coordination

Teams may have multiple product versions reaching different customers.
Managing and communicating the status of numerous flags across the
team can be difficult.

Tech debt

Feature flags can introduce technical debt into products, although this
can be managed by cleaning up flags once they’re rolled out to 100% or
no longer active.

 What is tech debt?

The implied cost of future reworking required when choosing an easy
but limited solution instead of a better approach that could take
more time.

Implementing feature flags
There are many paths to implement feature flags with varying logistical
considerations and return on investment. The path your team takes depends
on resourcing and organizational goals.

Feature flagging has some infrastructure dependencies that must be
addressed to function correctly. As teams scale their use of feature flags and
switching on/off flags becomes a business decision, it becomes critical to have
an authoritative data store and a management mechanism for the flags. Many
third-party feature flag services provide this data store dependency.

THE DEFINITIVE FEATURE FLAGGING GUIDE 6

SaaS feature flag solutions like Harness,
LaunchDarkly, and Split can help your team achieve
the benefits of a feature flagging solution sooner.
They handle heavy logistics and offer easy-to-
integrate libraries that expedite installation. This
allows teams to focus on core business duties
instead of infrastructure management. What
we learned from these companies about their
integrations follows.

Work with a trusted
feature flag expert

THE DEFINITIVE FEATURE FLAGGING GUIDE 7

How is Harness most
commonly used?
Harness Feature Flags is the force multiplier empowering Dev and DevOps
teams to increase their deployment frequency by 3X, resolve production
issues in minutes instead of days, and spend 30% more time coding instead of
managing releases.

Dev and DevOps teams are working faster, safer, and smarter using Harness
Feature Flags.

 · Release and manage features
in code. Unblock Dev teams and
empower them to build, release,
and govern features using YAML,
API, and OPA through automated
GitOps workflows. Deliver
change to customers faster and
automatically govern releases
and changes without ever having
to touch a UI.

 · Speed without compromising
control. Automate build, deploy,
and release guardrails with
flexible pipelines across CI/
CD and feature management.
Ship more features and reduce
deployment risk with the control
and governance enterprises
require — all without breaking
things, even in production.

 · Cut developer triage time to
zero. Alert Devs when reliability
or cloud cost issues are detected
against their live changes, and
go straight to the problematic
feature flag and turn it off, no
rollback required. Enable Devs to
identify and resolve issues right
away and focus on developing
features instead of wasting time
digging through logs.

1 billion+
feature flag evaluations per day are
powered by Harness Feature Flags

THE DEFINITIVE FEATURE FLAGGING GUIDE 8

What are the top considerations Harness
recommends when choosing a feature flag
solution?
The top items to consider for a customer should ideally be in the context of
the feature management maturity journey, which is outlined in this datasheet:

1. Implementing: The basics — boolean toggles & user targeting

2. Managing: Visual UI — management dashboard & analytics

3. Automating: Security — access control & automated workflows

4. Scaling: Governance — progressive delivery & native CI/CD

We can bundle these into three questions to answer:

1. Can we manage it ourselves and answer questions about how flags
are used?

2. Can we automate the management of releases and feature governance?

3. Can we scale this alongside our CI/CD software delivery process?

Eventually, all teams adopting feature flags will embark on this maturity
journey no matter their starting point. Teams should seek to work with
vendors that can meet them at each stage of this journey, or risk having to
migrate tools or build and maintain custom solutions on top of their feature
management tool of choice. Harness Feature Flags is built with this maturity
journey in mind, so our customers are able to rest easy knowing that all of
these requirements will be met even at scale.

https://www.harness.io/resources/feature-management-maturity-model
https://www.harness.io/resources/feature-management-maturity-model
https://www.harness.io/resources/feature-management-maturity-model

THE DEFINITIVE FEATURE FLAGGING GUIDE 9

What are Harness’s best practices for
implementation?
1. Naming new features: Plan

ahead for how a feature will
be named, especially if it
will become a permanent
operational flag, or if the flag
is intended to be leveraged
by customer-facing (non-
engineering) teams. Flags
should be easy to find and
use for required use cases, not
require more engineering input.

2. Plan for scale ahead of time:
Create process and ownership
around managing flags. As flags
start to pile up in a system,
they cause massive tech debt
and end up adding more work
instead of speeding it up. Have
those conversations up front so
the right solutions are in place
before running headlong into
feature flag hell at scale.

3. Use feature flags by default: Put
any code change you’re making
behind a feature flag. Instead of
looking for the right use case,
use them everywhere, the same
way that the de facto way to
deploy code is through a CI/CD
process. Use them as a testing
and failsafe mechanism in
production; it’s easy to remove
them if they’re not needed.

4. Consider trunk-based
development: By having fewer
long-lived branches and code
paths and more feature flags
keeping changes dark even in
your production environment,
you will be able to merge more,
deploy more, and ultimately
reduce risk substantially.

5. Leverage operational toggles:
Flags are usually meant to be
transient or experimental. But,
you should also consider how
to put permanent flags around
certain code paths that control
key configuration settings to
leave you prepared to instantly
handle production failures,
reduce MTTR, and make it less
stressful to deal with system
outages.

6. Smaller changes, not singular
massive flags: Most user-facing
features will have multiple
associated changes. It makes
sense to put all of them behind
a single flag, but what makes
more sense is to have each
change behind a single flag, and
link multiple flags in sequence.
Now, if there is an issue, it’s
much easier to triage the
problematic code path or test
incremental changes.

https://www.harness.io/resources/ebook-feature-flags-101
https://www.harness.io/blog/trunk-based-development
https://www.harness.io/blog/trunk-based-development
https://www.harness.io/blog/kill-switches

THE DEFINITIVE FEATURE FLAGGING GUIDE 10

7. Feature flags as the first line
of defense: If all changes
are behind a flag, resolving
production issues becomes
trivial instead of stressful.
Rather than triggering a
rollback or roll forward, a
flag can be flipped off for the
offending change while a fix
is implemented and queued
for deployment. Instead of an
urgent war room, it becomes
a matter of flipping a flag and
asking the engineer to fix it for
the next deployment.

8. Test in production with live
data: While feature flags should
not be used to bypass testing
and acceptance in CI/CD, they
should be used to incrementally
test the behavior of a change in
production. Testing on smaller
user bases to validate the
feature and then scaling up to
test real user load and behavior
is the most common use case
we see for testing in production.

9. Create enforceable governance
processes: One way to
avoid feature flag hell is to
have good governance that
ensures procedures and best
practices are followed. This
can include approvals, meeting
performance benchmarks, and
only committing to release
when certain triggers are met.
But, things do go wrong, and
it’s important also to be able
to audit what happened to
minimize the time to resolve
the issue. The combination of
these make it less likely an issue
will occur and make resolution
simpler. Ideally, this process
would be automated as a
development guardrail.

LEARN MORE ABOUT FEATURE FLAGS BEST PRACTICES

Check out this blog post that goes in-depth about each of
these. At Harness, we support our customers in implementing
best practices that we ourselves use, so you’re in good hands.

https://harness.io/blog/faster-incident-resolution/
https://harness.io/blog/faster-incident-resolution/
https://harness.io/blog/faster-incident-resolution/
https://www.harness.io/resources/testing-in-production-linux-foundation
https://www.harness.io/resources/testing-in-production-linux-foundation
https://www.harness.io/blog/opa-feature-flags
https://www.harness.io/blog/feature-flags-best-practices

THE DEFINITIVE FEATURE FLAGGING GUIDE 11

What are common pitfalls Harness
sees in feature management?

 · Building and maintaining your own system. Teams often build their
own internal system for feature flags, which makes sense as they are
not complicated. However, this approach limits the value of the solution
since it’s difficult to support multiple teams, use cases, and manage it at
scale. It’s also risky to use without the right guardrails in place. Harness
Feature Flags provides core functionality and robust capabilities such as
RBAC and security, release management and governance automation,
flag usage analytics, change audit trails, and triage alerts for reliability
and cost. These may not seem immediately valuable, but become critical
requirements over time.

 · Separating feature management from CI/CD. Feature management is
mission critical in software delivery. Teams need end-to-end visibility,
control, security, and automation without cobbling together separate
solutions to maximize the value of CI/CD and feature management.
Harness Feature Flags is part of an integrated software delivery platform
that connects all of these elements with a single schema for analytics,
access control, security, audits, governance, and workflow automation.
Harness can also help teams automatically clear old flags, verify features,
triage cost and reliability issues, and surface business insights for
optimized software delivery.

 · Managing flag tech debt. Feature flags are usually transient, and can
create tech debt if left in the code for a long time. Traditionally, identifying
and removing stale flags trades off with new feature development.
Harness Feature Flags automatically surfaces stale flags and can trigger a
PR to remove them from the code, allowing teams to avoid this tradeoff.

 · Not knowing where to start. The most common question we receive about
feature flags is, “How do I get started?” The solution is simple: wrap any
small change in a flag, which can be done by a single developer. It doesn’t
have to involve multiple teams or be a larger project. After testing, it’s easy
to scale it out to more users, both technical and non-technical.

https://www.harness.io/blog/build-or-buy-feature-flags
https://www.harness.io/blog/build-or-buy-feature-flags
https://medium.com/dataseries/the-rise-and-fall-of-knight-capital-buy-high-sell-low-rinse-and-repeat-ae17fae780f6
https://www.harness.io/resources/control-and-velocity-in-production
https://www.harness.io/product-features/feature-flags#ID_1
https://www.harness.io/product-features/feature-flags#ID_1

THE DEFINITIVE FEATURE FLAGGING GUIDE 12

 · Not empowering customer-facing teams to manage access. Feature flags
enable non-engineering teams like Product, Customer Support, and Sales
to manage customer access without requiring manual backend changes
from Dev or redeployments by DevOps. Once a good RBAC model is in
place to keep changes secure, engineers can focus on shipping code and
customer-facing teams handle customer requests.

Teams should seek to work with vendors that can help them avoid these
pitfalls and partner with them as they embark on their feature management
maturity journey. Harness Feature Flags is built with implementation and
maturity in mind, so our customers are able to rest easy knowing that they can
avoid these pitfalls and leverage feature flags successfully.

Enforcing governance and best
practices for change management:
Category 1 puts development
guardrails (aka governance) in place
so developers can focus on building
features within the given guardrails,
rather than the minutia of deploying
those features. We recommend
establishing that framework across
Dev and DevOps early to gain
efficiencies in building and delivering
features. Harness provides this out
of the box, with room to customize
based on specific customer need.

Removing old and stale flags in
production: Category 2 minimizes
the tech debt that flags create. Most
flags are, by nature, transient and
should be removed once the feature
is fully rolled out. We recommend
making a plan for flag use and
deprecation early and using a tool
like Harness that surfaces old
and stale flags for removal — and
automates it.

1 2

What are Harness’s recommendations for
feature flag maintenance and management?
Our customers break this into two categories:

https://www.harness.io/resources/feature-management-maturity-model
https://www.harness.io/resources/feature-management-maturity-model

THE DEFINITIVE FEATURE FLAGGING GUIDE 13

How other teams use Harness
 · ZeroFlucs reduced their infrastructure cost by 60% in 1 week

 · Tyler Technologies replaced LaunchDarkly with Harness because they
wanted integrated CI/CD/FF to create a better software delivery process

 · Metrikus cut down their commit-to-deploy time by 66% with FF and are
now delivering features with 3x velocity

Technical architecture
Architecting Feature Flags for Performance at Scale

GET STARTED

Try Harness

Download Marketplace App

https://www.harness.io/case-studies/zeroflucs-reduces-infrastructure-cost-feature-flag-optimization?trk=organization_guest_main-feed-card_feed-article-content
https://www.harness.io/case-studies/tyler-tech-achieves-unparalleled-velocity-feature-flags
https://www.harness.io/case-studies/metrikus-commit-to-prod-time
https://www.harness.io/blog/architecting-feature-flags-performance
https://www.harness.io/interest/atlassian-progressive-delivery-ff-offer?utm_campaign=23-2-ff-plg-atlassian-marketplace&utm_medium=marketplace&utm_source=partner&utm_content=plg
https://marketplace.atlassian.com/apps/1227514/feature-flag-management-by-harness?hosting=cloud&tab=overview

THE DEFINITIVE FEATURE FLAGGING GUIDE 14

How is LaunchDarkly most
commonly used?
LaunchDarkly gives developers the confidence to ship code more often while
empowering operations and product teams to minimize risk and continuously
deliver customer value.

Teams building with LaunchDarkly use frequent, low-risk releases and
actionable, data-driven insights to maximize the impact of their software
delivery efforts.

 · Scale safer releases: Eliminate the fear of deploying code to production.
Standardize release workflows across large teams while driving
governance and efficiency through automation.

 · Accelerate modernization: Update your tech stack without disruption.
Gradually introduce and validate new infrastructure and cloud services
to ensure your applications are performing at their best.

 · Experiment and optimize: Don’t just ship features, ship value. Target
new capabilities to select users and run actionable experiments to learn
and iterate quicker.

4000+
organizations trust LaunchDarkly to
power their digital applications

THE DEFINITIVE FEATURE FLAGGING GUIDE 15

What are the top considerations
LaunchDarkly recommends when
choosing a feature flag solution?
Development leaders in 4000+ organizations, including many of the
Fortune 500, trust LaunchDarkly to power their digital applications.

Here’s what they considered when evaluating feature flagging tools:

1. Choose a tool developers love to use. Check platforms like G2 to see
developer reviews of the top feature flagging tools. Ensure that your
feature management platform offers integrations with your tech stack
and maintains a library of SDKs for the programming languages your
team uses. Find a tool with an automation engine to help teams build and
automate release workflows, ensuring governance and reducing context
switching.

2. Ensure security, consistency, and flag hygiene at scale. Choose a tool
with first-class architecture that processes flag changes in real time to
any device globally. Confirm it never exposes flag rules to the client side
and offers role-based access control (RBAC) for granular control over
platform permissions. Find a platform that helps you identify outdated
flags in your code so you can reduce tech debt and maintain good
hygiene. Feature flags + experiments = the best user experience. Deliver
new features with confidence by learning from your users and systems
before a full rollout with LaunchDarkly Experimentation.

3. Deliver a better user experience with experiments. Deliver new features
with confidence by choosing a feature management platform that offers
experimentation so you can
learn from your users and
systems before a full rollout.

https://www.g2.com/categories/feature-management
https://docs.launchdarkly.com/integrations?q=code%20references
https://docs.launchdarkly.com/sdk?q=code%20references
https://launchdarkly.com/features/feature-workflows/
https://launchdarkly.com/features/feature-workflows/
https://launchdarkly.com/features/enterprise-grade-architecture/
https://docs.launchdarkly.com/home/code/code-references?q=code+references
https://docs.launchdarkly.com/home/code/code-references?q=code+references
https://launchdarkly.com/features/experimentation/

THE DEFINITIVE FEATURE FLAGGING GUIDE 16

1. Use feature flags liberally: Keep
changes small, gate them all
with feature flags, and adopt
“feature-driven development”
for fine-grained control of your
application across the stack.
Ensure that each feature flag
has a dedicated purpose.
Feature management unlocks
the ability to gracefully degrade
your system without having
to redeploy. Flip a switch to
strategically disable and enable
components however big or
small.

2. Backend feature flagging:
Server side feature flag
evaluation often focuses on
use cases like API changes,
database changes, or
migrations. These types of
rollouts become trivial when
using LaunchDarkly and
context-based targeting to roll
out changes.

To optimize your usage and
application performance,
use self-healing SDKs and a
global Flag Delivery Network
and cache feature flag values
internally.

3. Frontend feature flagging:
To provide the best user
experience, ensure that feature

flag changes are streamed to
any device, anywhere in the
world, in real time. LaunchDarkly
client SDKs initialize during
application start-up, in as little
as 25ms, and maintain an
always-on connection to the
Flag Delivery Network. This
allows us to stream feature
flag updates to your application
within milliseconds.

4. Limited access networks: To
maintain limited network access
and advantages to security
posture, LaunchDarkly offers
the Enterprise Relay Proxy. By
allowing only the Relay Proxy
external network access, you
can keep your existing security
posture intact without exposing
your applications to the outside
world.

5. Serverless: In serverless
applications, optimize warm
start performance by initializing
the LaunchDarkly SDK client
outside of your function handler.
On a warm invocation, it can
be reused by subsequent
invocations and reduce both
execution and response time.
Always close the client or
flush the client to ensure your
analytics data remain accurate
and up-to-date.

What are LaunchDarkly’s best practices for
implementation?

https://launchdarkly.com/blog/feature-driven-development-versus-test-driven-development/
https://www.thoughtco.com/graceful-degradation-in-web-design-3470672
https://docs.launchdarkly.com/sdk/server-side
https://launchdarkly.com/blog/flag-delivery-at-edge/
https://docs.launchdarkly.com/sdk/client-side
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://developer.mozilla.org/en-US/docs/Web/API/Server-sent_events/Using_server-sent_events
https://docs.launchdarkly.com/home/relay-proxy
https://docs.launchdarkly.com/guides/infrastructure/serverless
https://docs.launchdarkly.com/guides/infrastructure/serverless
https://launchdarkly.com/blog/using-launchdarkly-in-aws-serverless/
https://launchdarkly.com/blog/using-launchdarkly-in-aws-serverless/

THE DEFINITIVE FEATURE FLAGGING GUIDE 17

What are common pitfalls LaunchDarkly sees
in feature management?

 · Missing the Target: Manually writing targeting code in your application
can make it exceptionally difficult to manage. Targeting changes can be
isolated to your feature management platform to keep it transparent,
auditable, and eliminate the risk inherent in changing code. LaunchDarkly
supports targeting based off of the context of the request including
properties like user, device type, location, or any other criteria you’d like to
focus on.

 · Rolling out your own: Feature flagging is likely not your core business.
Creating your own tooling requires engineering expertise and time
away from serving primary development needs. Take advantage of
LaunchDarkly’s experience pioneering, innovating, and scaling
feature management.

Less mature feature management systems lack enterprise capabilities
like targeting, global scale, comprehensive caching strategies, ability to
integrate with the most popular languages, custom RBAC, automation,
and auditability. Many organizations start without appreciating that they
will need many of these capabilities over time.

 · Bloating your app: Unlike long-lived flags, ephemeral flags are for short-
term use. As a form of technical debt, they are designed to be removed
once your experiment or migration is complete. Without tools like
LaunchDarkly’s Code References, maintenance becomes tedious
and difficult.

 · Lacking security: Protecting your properties and evaluation logic is
critical. Transmit the minimum required properties to ensure evaluation is
successful. LaunchDarkly feature flag evaluation is secure by default — we
only transmit feature flag data for the current user. LaunchDarkly never
sends your feature flag evaluation rules to the client, so you don’t have to
worry about users figuring out how you’re targeting — and how they can
circumvent it.

https://docs.launchdarkly.com/home/flags/targeting
https://docs.launchdarkly.com/home/flags/targeting
https://docs.launchdarkly.com/home/code/code-references

GET STARTED

Try LaunchDarkly

Download Marketplace App

THE DEFINITIVE FEATURE FLAGGING GUIDE 18

What are LaunchDarkly’s recommendations
for feature flag maintenance and
management?

Start scheming: Develop and publish
a scheme for how to organize your
flags that is durable to changes
in teams, organizations, and
applications over time. Choose a
feature management platform that
offers a variety of facets by which
you can organize, group, and catalog
feature flags.

Automate everything: Reclaim your
nights and weekends by scheduling
automatic releases. Notify your
team automatically when feature
flag changes need approval. Build
self-healing systems by pairing
your observability tools with your
feature management platform to
automatically revert problematic
releases.

1 2

How other teams use LaunchDarkly
 · IBM goes from deploying twice a week to 100+ times a day

 · TrueCar deploys 20 times a day, migrates 500 websites to AWS

 · Intuit takes control of releases and makes “speed a habit”

 · HP standardizes and scales releases with LaunchDarkly

Technical Architecture
Evolving Global Flag Delivery

https://launchdarkly.com/integrations/atlassian/
https://marketplace.atlassian.com/apps/1219142/launchdarkly-for-jira?hosting=cloud&tab=overview
https://docs.launchdarkly.com/home/feature-workflows
https://docs.launchdarkly.com/home/feature-workflows
https://docs.launchdarkly.com/home/feature-workflows/triggers?q=flag+trigger
https://docs.launchdarkly.com/home/feature-workflows/triggers?q=flag+trigger
https://launchdarkly.com/case-studies/ibm/
https://launchdarkly.com/case-studies/truecar/
https://launchdarkly.com/case-studies/intuit/
https://launchdarkly.com/case-studies/hp/
https://launchdarkly.com/blog/flag-delivery-at-edge/
http://Link goes here

THE DEFINITIVE FEATURE FLAGGING GUIDE 19

How is Split most commonly used?
The Split Feature Data Platform™ elevates the approach to building,
releasing, and experimenting with software. By pairing feature flags with data
measurement capabilities, Split is helping businesses release features quickly,
more intelligently, and with less risk.

Split helps engineering and product development teams support three
primary use-cases:

 · Reducing engineering cycle time: Empower teams to deploy when
they want, roll out changes whenever they are ready, and dynamically
adjust features in production. Split’s feature flags provide a foundation
for trunk-based development, migration to microservices, and
progressive delivery.

 · Mitigating release risk: Split’s feature flags allow you to separate
code deployments from releases. Roll out features with guardrail
metrics and alerting in place to catch faulty releases early on without
disrupting the user experience.

 · Deliver features that matter: When paired with measurement data,
feature flags also power experimentation, A/B testing, multivariate
testing, and beta testing so you can prove out your best ideas without
slowing down. Split can ingest data from any source, speeding up data
analysis and providing your business customer insights in real time.

Feature Flags are a powerful
development tool. In addition to
those listed above, here are some
less common, yet still important
use cases to be considered.

3 billion+
users worldwide are served
feature flags from Split

https://www.split.io/blog/strategies-for-integrating-feature-flag-management-into-an-existing-project/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/solutions/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/solutions/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/blog/5-advanced-feature-flag-uses/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide

THE DEFINITIVE FEATURE FLAGGING GUIDE 20

What are the top considerations Split
recommends when choosing a feature flag
solution?
When evaluating a feature flag solution, one needs to take into account the
following things:

1. Fast, safe, predictable releases: Engineering teams often struggle to
move faster without breaking anything in their infrastructure, which
ultimately leads to delivery delays of weeks or months. When evaluating
new solutions, teams are looking into platforms that can help:

 · Speed up deployment cadence

 · Reduce release uncertainty and cycle time for simple changes

 · Monitor and alert on key metrics

 · Focus on the highest impact projects

2. Scalable, enterprise-level architecture: Teams are looking for solutions
that can support growing demands of enterprise applications that are
highly resilient and can support millions of users. They are looking for
platforms that can provide:

 · Fast and reliable feature delivery via SDKs

 · Unmatched data privacy

 · Advanced approval flows, audit logs, and SSO capabilities

 · Integration with best of breed tools and languages

3. Drive Team Efficiency: Engineering teams are looking for solutions
that can allow them to get more done without working more hours or
needing additional resources. They are looking for tools that can provide
psychological safety from an operational and release standpoint, which
includes:

 · Tech-debt management of feature flags

 · Alerts on first sign of feature degradation

 · Ability to identify faulty features and roll them back

Feature flagging is a technique that can be used for a range of purposes. Learn
more in this Essential Guide to Feature Flags.

https://www.split.io/product/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/architecture/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/guides/feature-flags/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide

THE DEFINITIVE FEATURE FLAGGING GUIDE 21

What are Split’s best practices for
implementation?
1. Feature flags provide the speed

and safety needed to move
fast without breaking things:
Gate new features behind
flags to develop and deploy to
production without disrupting
the user experience. Minimize
the blast radius of potential
bugs by gradually releasing new
features to target audiences and
disabling faulty features with a
kill switch.

2. Manage and govern releases to
ensure compliance and reduce
release errors: Place mandatory
peer review and approvals before
code changes in production
take effect. Control which users
can edit or publish changes by
setting permissions for specific
objects and environments.

3. Protect your private data: Keep
sensitive user data within your
app or server so no private data
(PII) is sent back to Split. When
targeting on private attributes,
email or demographics, let
the SDKs do the heavy lifting
of grabbing information from
your feature management
solution and sending it to your
application, so that critical
information is never shared
outside your application.

4. Caching keeps your app
resilient: All flags and rules
should be cached locally in
your SDK, so your application
continues to perform as
expected even in the case of a
CDN outage. Our SDKs update
their state by asynchronously
fetching data from our CDN
provider, which means no need
for open connections, and no
streaming connections dying
unexpectedly.

5. Put guardrail metrics in place:
Monitor features for movement
in any key metric that matters
for your application. Once a
bad feature is identified, teams
responsible for the feature flag
will be notified. This allows you
to simply disable the feature
in production without any
rollbacks or hotfixes required.

https://www.split.io/blog/the-benefits-of-leveraging-feature-toggles-in-software-development/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/blog/the-benefits-of-leveraging-feature-toggles-in-software-development/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/blog/feature-management-architecture-security/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide

Mounting challenges to developing an in-house solution

Growing business requirements

Release faster, lower risk
Dev-driven use cases for
feature flags:
 · Continuous integration
 · Phase rollouts for

continuous delivery
 · Kill switch
 · Test in production
 · Full stack control

Manage & evaluate user
experience
Product-driven use cases for
feature flags:
 · Beta programs and

paywalls
 · A/B/n testing

Increase business value
Business-driven use cases
for experimentation:
 · Hypothesis-driven

development
 · Data-driven

development

Manual config changes

No controlled access
or audit history

Application performance
takes a hit

Projects get orphaned
Lack of a UI or metrics dashboard

Incomplete open source options
Lack of documentation

Tech debt
Problematic customer support

Manual compilation of target segments

Growing business requirements

Mounting challenges to
developing an in-house solution

THE DEFINITIVE FEATURE FLAGGING GUIDE 22

What are common pitfalls Split sees
in feature management?
Build versus Buy: Product teams often consider building a homegrown
or in-house feature management solution. This may seem like a good
idea at first, and at the very least, can help demonstrate the benefits of
feature management technology. Dev-driven use cases such as continuous
integration, phased rollouts, kill switches, testing in production, and full stack
control help engineering teams meet business needs of releasing faster
with less risk to application stability. However, with the increased use cases
comes an increase in both project scope and challenges to continued in-house
development. A closer look at the full scope of challenges and incremental
use-cases against internal resources cannot be understated.

As use cases for feature flags grow, so do the challenges of
building an in-house system:

https://www.split.io/wp-content/uploads/2022/07/build-vs-buy-guide.pdf?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide

GET STARTED

Try Split

Download Marketplace App

THE DEFINITIVE FEATURE FLAGGING GUIDE 23

What are Split’s recommendations for
feature flag maintenance and management?
Split offers tools within its platform to help streamline the technical debt
caused by feature flags.

Development teams can easily
automate the removal of feature
flags based on where they are in the
feature delivery lifecycle using our
Admin APIs.

Teams can also leverage Split’s
Rollout Boards to understand which
flags are ready to be cleaned up
based upon status.

1 2

How other teams use Split
Customers who use Split have achieved a 50x increase in deploy frequency, an
~1 minute MTTR, and 10.7% increase in engineering efficiency. Hear what a few
of our customers have to say.

 · Creating customer impact via experimentation: Learn how Imperfect
Foods leverages Split to experiment and measure customer impact

 · Reduce engineering cycle time and mitigate release risk: Learn how
Speedway Motors has sped up engineering cycle time with 14x more
releases per month

 · Support continuous deployment: Learn how WePay ramped up its release
cadence, separating code deployment from release

Technical architecture
Stateless Architecture

https://www.split.io/signup-atlassian/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://marketplace.atlassian.com/apps/1224872/split-for-jira?hosting=cloud&tab=overview
https://www.split.io/blog/feature-flag-retirement/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/customers/imperfect-foods/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/customers/imperfect-foods/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/customers/speedway-motors/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/customers/wepay/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide
https://www.split.io/architecture/?utm_source=atlassian&utm_medium=partner&utm_campaign=atlassian-buyers-guide

©2023 Atlassian. All Rights Reserved. CSD-5403_DRD-05/23

Ready to get started with
Feature Flags in Jira?
Learn more

https://support.atlassian.com/jira-cloud-administration/docs/integrate-with-feature-flags/
https://support.atlassian.com/jira-cloud-administration/docs/integrate-with-feature-flags/

