
Scale your organization’s
repositories with
Bitbucket Mesh

i

Table of contents

Introduction 	 2

Mesh Overview 	 4

Key concepts & terminology 	 6

Mesh Properties and Benefits 	 8

Replication and resilience 	 8

Fault tolerance 	 10

Rebalancing 	 11

Repository repair	 12

Scalability 	 12

Performance 	 14

Request routing	 17

Mesh Deployment Considerations 	 18

Sidecar 	 20

Authentication 	 21

Complexity 	 21

Additional storage capacity requirement 	 22

Multiple availability zone deployments 	 23

Auto-scaling 	 27

Conclusion 	 28

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 1

Executive Summary
As you and your developers continue to write great software, your repositories
continue to grow. We want to ensure that Bitbucket can support even the
largest customers with the most complex repositories.

In this whitepaper, you’ll learn about Bitbucket Mesh, the next generation of
repository storage that can improve the performance and reliability of your
repositories, even as you scale.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 2

Introduction
Most developers don’t put much thought into how their code is stored; they
just learn what they need to know in order to write, edit, and push their
code along. However, for engineering leads and managers who manage their
organization’s repositories, the storage and management of their team’s code
may keep them up at night.

Since clustering was introduced in Bitbucket Data Center, Git repositories have
been hosted on a shared network file system or NFS.

Fig. 1 – Bitbucket cluster for an NFS (pre version 8.0)

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 3

Network file systems have several advantages: centralized source of data,
remote access, support for multiple operating systems, and reliability to
name a few. However, due to the central configuration of an NFS server, any
disruption to the server can cause a massive disruption as your developers
would be unable to access or edit any files, making it a single point of failure.
Additionally, as your repositories grow you will notice slower performance
when accessing files.

To help increase the performance, reliability, and scalability of Bitbucket
(especially as many of you look to migrate or are already operating in the
cloud), Atlassian developed Bitbucket Mesh.

What is a network file system (NFS)?

A NFS is a framework designed to allow a user on a device to access remote
files over a network. It defines the way files are stored and retrieved from
storage devices across networks. It is commonly used where file sharing and
storing happens across multiple machines or operating systems.

Bitbucket Server, Data Center, and Cloud have been using NFSv3. The NFSv3
specification was published in 1995, which most notably added support
for 64-bit files and removed the 4.2 GB file size limit associated with early
versions of NFS.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 4

Mesh Overview
Bitbucket Mesh is a distributed, replicated, and horizontally scalable Git
repository storage subsystem designed for high performance, scalability,
and resilience. It’s a new approach to storing Git data and handling Git
requests which now operate as separate Java processes outside of Bitbucket.
Repositories (and copies of repositories) are stored on the Mesh nodes, while
the NFS server continues to host non-Git data, including projects, user avatars,
attachments that may be associated with pull requests, comments, plugins,
and Git Large File Storage (LFS) objects.

Fig. 2 – Bitbucket Mesh configuration with three nodes

Fig. 2 – Bitbucket Mesh configuration with three nodes

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 5

 Mesh upgrade and migration

It’s possible to upgrade to Bitbucket 8.0+ and not adopt Mesh. Repositories
would continue to reside on the NFS-based repository store. When you
are ready to leverage Mesh, three or more Mesh nodes are deployed and
Bitbucket is configured to use them. However, once the nodes are added to
the system, they remain unused until existing repositories are migrated to
Mesh or until new repositories are created there.

By default, new repositories aren’t created on Mesh. This can be changed
by enabling Create new repositories on Mesh in Bitbucket Administration.
Forking existing repositories doesn’t result in the fork being created on
Mesh. If a repository resides on the NFS store, so do all forks, the existing
and new ones.

You can also migrate existing repositories to Mesh. The UI provides a tool
that allows repositories to be migrated individually or for all repositories to
be migrated at once. Repository migration doesn’t require downtime and
can be carried out even while the repositories being migrated are still in use.

Not all repositories need to be migrated to Mesh simultaneously, permitting
a gradual migration that may be phased and stretched out over many days,
weeks, or more. This is often useful to de-risk a Mesh migration in case
you are unsure if your Mesh deployment is appropriately sized or ready
for production load. It is possible to move repositories gradually while
monitoring load and resource usage.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 6

Key concepts and terminology
The following information will help you understand the entirety of the
Mesh system.

Mesh nodes: Instances of mesh java
applications and their respective
home directories.

Mesh app: The mesh java application
instance.

Sidecar: A bundled mesh app
– responsible for handling Git
operations locally on the Bitbucket
node. Imitates a pre-mesh
environment.

Control plane: A subsystem in the
core Bitbucket application that is
responsible for managing the Mesh
nodes. It is responsible for distributing
configuration information, allocating
repository replicas to nodes, routing
requests, and the management and
distribution of replica state, either
consistent or inconsistent.

Partition ID: A collection of Repository
Hierarchies that are to be distributed
across mesh nodes. A set of mesh
nodes gets assigned a Partition
(default is three mesh nodes) to
become the destination for these
repository hierarchies.

Replication: Process of mesh nodes
communicating with each other to
either distribute git data from an
incoming push or to repair any nodes

that have detected inconsistencies.

Write change: Any git operation
that will apply changes to refs. For
example, a push.

Vote Majority / Quorum: In order for
a write change to be committed,
follower mesh nodes need to have
majority “yes” votes to successful
updates. Otherwise, the write change
is rejected.

“Yes” vote: A yes vote instructs
the leader that the git operations
completed successfully and that
changes can be applied to the
mesh node.

Just-In-Time Fetch: The fetch that a
mesh node will do to another mesh
node if it fails to update refs. After
successful fetching, a ref update is
attempted again.

Topology: Data structure for mesh
nodes informing it of which partitions
it holds and which other mesh nodes
hold other replicas of the partitions
(and their RPC URL).

Sideband Channel: A constant RPC
channel on which mesh nodes can
communicate metadata and state
back to Bitbucket.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 7

gRPC: A modern, open-source, high-
performance Remote Procedure Call
(RPC) framework that can run in any
environment. Efficiently connects
services in and across data centers
with pluggable support for load
balancing, tracing, health checking
and authentication. Applicable in the
last mile of distributed computing to
connect devices, mobile applications
and browsers to backend services.

JWT: JSON Web Token – an open
internet standard for creating or
transmitting information between
parties as a JSON (Javascript Object
Notation). JSON objects can be
transmitted quickly and contain all
the required information about an
entity to avoid querying a database
more than once. The recipient of a
JWT also does not need to call a
server to validate a token.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 8

Mesh Properties and Benefits

Replication and resilience
The key to Bitbucket Mesh’s resilience is the concept of replication. In the
NFS-based repository system, there’s only one copy of the repository. In Mesh,
multiple copies of any given repository exist on different mesh nodes, with the
specific number controlled by the “replication factor”, which is adjustable at
the global level.

When Bitbucket introduced clustering, it improved the availability of the NFS.
Fig. 3 shows a typical Bitbucket cluster in a high-availability deployment.
This type of deployment can sustain the loss of a cluster node either due to
scheduled maintenance or a failure.

While this system may be built with redundant disks, power supplies, and
network interfaces, it’s still a single node and subject to failures. Besides,
it can’t be restarted for maintenance (such as operating system patching)
without a Bitbucket system outage.

Various commercial NFS “appliances” take the concept of redundancy further,
including redundant system boards. These boards mean that updates can be
carried out without interrupting operations, and often most components can
be replaced without an outage. However, these appliances are expensive and
still deployed in a single physical location, so they aren’t truly redundant.

Fig. 3 – Bitbucket cluster with NFS-based repository store in a typical high-availability deployment

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 9

Unfortunately, fully redundant network filesystems are highly unsuited to
Bitbucket’s needs, or more specifically Git’s needs, as the synchronization
and coordination overheads result in very high I/O latency for filesystem
operations. As a consequence, Bitbucket’s performance suffers. This problem
also applies to cloud-based NFS services such as Amazon’s Elastic Filesystem
and other cloud offerings, making highly available cloud deployments
unobtainable.

Bitbucket Mesh solves this problem by spreading and replicating the
repositories, consisting of multiple redundant nodes. When repositories are
migrated to Mesh, they’re replicated to multiple Mesh nodes, ensuring that the
loss of any single node has no impact on the availability of the repositories it
hosted because each still has replicas available on other nodes. When Mesh
nodes are brought back online, they automatically repair their replicas and are
returned to service.

Furthermore, it’s possible to host Mesh nodes in different physical locations.
This permits different Mesh nodes to reside in different data centers, with
separate power supplies, network infrastructure, cooling systems, and other
factors that can greatly increase resilience. Using cloud terminology enables a
multi-availability zone repository store.

Fig. 4 – Multi-availability zone deployment of Bitbucket with Mesh

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 10

Fault tolerance

Fault tolerance enables a system to continue operating in the event of a fault
with any of the components. Replication provides increased fault tolerance over
the NFS-based repository store. The standard supported NFS deployment is a
Linux-based NFS server. While this system may be built with redundant disks,
power supplies, and network interfaces, it’s still a single node and is subject
to failures. Besides, it can’t be restarted for maintenance (such as operating
system patching) without a Bitbucket system outage.

Mesh replicas are located on three or more completely separate Mesh nodes.
The nodes can leverage independent hardware and don’t share the same power
source, cooling, network, or even physical location. This means that any physical
disturbance to one node doesn’t result in a total shutdown.

The minimum configurable replication factor is three. This permits the loss of
one replica while still supporting writes. The writes succeed on a quorum of
replicas, where “n” is the replication factor a quorum of (n/2 + 1) replicas must
be available for a write to succeed. The result of the division should be rounded
down. Read operations aren’t subject to the same quorum logic and only
require one available and consistent replica.

Example

For example, with a replication factor of three, a minimum of two replicas
must be present for a write to succeed. For a replica to participate in a write
operation, it must be consistent. A replica may be inconsistent because
the node missed one or more writes while it was offline and hasn’t been
repaired yet. So, a node hosting a replica may be online but may still be
inconsistent and thus, ineligible for participating in a write transaction. As a
result, it won’t count towards the quorum.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 11

Rebalancing

Bitbucket Mesh implements partition migration to allow repository replicas
(actually, partition replicas) to be migrated between nodes. This process helps
keep the nodes balanced in terms of storage and performance.

Partition migration exists to support rebalancing repositories across Mesh
nodes in support of the following two use cases:

	· Adding a new Mesh node: When a new Mesh node is added to the system,
it should start servicing requests for existing repositories. When a new
Mesh node is added, a rebalancing operation takes place, migrating one or
more partition replicas from existing Mesh nodes to the new Mesh node.

	· Removing a Mesh node: When a Mesh node is removed, it becomes
unavailable to host replicas. It’s important to understand the difference
between an offline node and a removed Mesh node. If a Mesh node is
simply shut down or is drained and disabled, this node still hosts replicas.
They are unavailable temporarily.

Removing a Mesh node is a configuration change that means the Mesh node
is no longer known to the control plane and no longer hosts replicas. For the
system to maintain the same availability guarantees, the replicas must be
hosted by that node to be migrated to another node before removal, and
specifically, to another node that doesn’t already host replicas for the given
partition.

Rebalancing doesn’t take available disk space or load into account. It
implements an algorithm that tries to uniformly distribute replicas amongst
available Mesh nodes. By keeping your nodes balanced, it ensures that any
one node features a drop in performance compared to the others.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 12

Repository repair

Bitbucket Mesh features a built-in repository repair function to help maintain
resilience and consistency. A repository replica needs to be repaired when the
replica has fallen behind either because the node missed one or more writes
while it was offline, or because the node failed to replicate the write. The
repair is also used to initialize a repository replica from scratch.

Repository repair happens when:

	· A new replica is created for a partition.

	· A repository is migrated from NFS to Mesh. The migration does an upload
to a ‘primary’ migration target and then, uses the repair to sync up the
other replicas.

	· Migrating partitions from one node to another. This happens during
rebalancing, after a new Mesh node has been added or before the
deletion of a Mesh node.

Scalability
Scalability ensures that Bitbucket can keep up as your repositories continue to
grow in size and complexity. There are two types of scalability, horizontal and
vertical. The primary difference between horizontal scaling and vertical scaling
is that horizontal scaling involves adding more machines or nodes to a system,
while vertical scaling involves adding more power (CPU, RAM, storage, etc.) to
an existing machine. Individual NFS-based repository systems can not scale
horizontally, as all files are stored centrally.

For Bitbucket Mesh, we focused on three core scalability factors:

	· Disk I/O (input/output) bandwidth and IOPS (input/output operations per
second) capacity

	· CPU available to Git worker processes

	· Memory available to Git worker processes

With NFS, scaling disk I/O bandwidth is restricted to vertical scaling. You can
add additional NFS filesystems to provide some horizontal scaling, but any
given repository can only ever exist on one filesystem at a time. However,
CPU and memory can be added to the system by adding application nodes.
Since each application node has a shared view of mounted NFS filesystems,
it can service a request for any repository hosted by the system. This is true
regardless of whether the instance has two or 20 application nodes.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 13

The NFS-based Bitbucket cluster permits horizontal scalability but with some
limitations as to how the NFS-based repository store can be scaled.

Specifically:

	· Adding new cluster nodes increases CPU and memory available to Git
worker processes as well as increases network bandwidth.

	· Adding additional NFS data stores increases repository storage
I/O bandwidth.

	· Adding additional NFS data stores only provides the ability to scale the
I/O bandwidth available to existing repositories. Only new repositories
are created on the additional NFS data stores while existing repositories
don’t benefit from the additional data stores. Additional data stores
provide scaling where the load is mostly uniformly distributed over all
repositories.

Mesh has a slightly different characteristic when scaling horizontally since a
given Mesh node can only service requests for repositories for which it hosts
a replica. This can become a bottleneck where some “hot” repositories exist,
repositories that are large, busy, and have a disproportionally large fraction
of usage. But Mesh provides true horizontal scaling of both processing and
storage capacity. Repositories are replicated to multiple Mesh nodes, and each
replica is capable of actively serving both read and write traffic. Each replica
adds capacity, and this capacity can be incrementally added or removed,
permitting flexible scaling both up and down.

 If your development teams are using a monorepo – a single large
repository that hosts multiple projects, potentially used by all developers
or a large fraction of the development staff – additional data stores do not
offer any scalability.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 14

In reality, for most systems, there will be a happy middle ground that balances
the need for scaling with the desire to minimize the cost of storage. When
migrating an existing system, this middle ground can be obtained, at least
approximately, by analyzing the distribution of requests using the access logs.

Performance
Bitbucktet Mesh aims to improve the performance across your repositories,
especially as you have more code and more users. When moving from a single
node to a multiple-node (clustered) deployment, the system has increased
scalability due to the additional CPU and memory available to service user
requests. A clustered system can sustain more concurrent users successfully.
However, individual requests can become slower. This occurs as a side-effect of
moving the repository storage from a local filesystem to a network-attached
filesystem, specifically NFS. In effect, this moves the storage further away from
the processing, increasing filesystem input and output (I/O) operation latency.

In a single-node Bitbucket deployment, the repository storage is hosted on a
local filesystem (see Fig. 5). In such a system, I/O latency for obtaining the size
of a file, reading a block of data, and other operations is fast, often taking a
few microseconds where data is cached, or on the order of 100 microseconds
for a disk read.

Example

If your Mesh system has a replication factor of three and a deployment of 20
mesh nodes, only three mesh nodes can service requests for a given “hot”
repository, with the other 17 nodes remaining idle or only servicing requests
for other repositories.

This problem could be resolved by increasing the replication factor to 20,
resulting in all 20 mesh nodes hosting a replica of each repository, and thus
being able to service requests for any repository. However, this comes at the
cost of increased storage space required: in this case, a 20x increase over
the storage requirement of the NFS-based deployment.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 15

In a multi-node Bitbucket cluster deployment, the repository storage is
hosted on a remote NFS (see Fig. 6). In such a system, I/O latency for similar
operations is 10 to 1000 times slower due to the necessity of requests
transiting the network, and due to the shared nature of the filesystem, many
things can’t be cached on the NFS client (that is the cluster node) but can only
be cached on the NFS server, thus still incurring network latency overheads.

This increase in I/O operation latency is particularly harmful to Git as it relies
on low-latency filesystems for high performance.

Fig. 5 – Bitbucket with local repository store

Fig. 6 – Bitbucket cluster with NFS-based repository store

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 16

Bitbucket Mesh solves the above problem by moving the processing to the
storage, eliminating the additional I/O operation latency that exists in the NFS-
based system (see Fig. 7). If we take the above example and apply it to a Mesh-
based system, the cluster node makes a single remote procedure call (RPC) to
a Mesh node. Then, the forked Git process makes its 5000 I/O requests to the
local storage, taking 50 ms to complete (that is 5000 x 10 μs). Then, factoring in
the RPC round trip overhead of, for example, 1 ms, the entire request would take
a total of 51 ms to complete – again appearing almost instantaneous to a user,
improving the overall performance experience of each user.

Example

To illustrate this, we can take a user request to list all branches or tags
in a repository. This would result in Bitbucket forking a git-for-each-ref
process to obtain the list from the repository on disk. For a repository with
many branches, particularly if git-pack-refs hasn’t run recently, such a
request may require, for example, 5000 individual I/O operations. On a local
filesystem where operation latency is 10 μs, this request would take 50 ms
to complete, appearing almost instantaneous to a user.

The same request on an NFS-based repository store, where operation
latency is often in the range of 0.5-2 ms, could instead take between 2.5 and
10 s, which is an unacceptably long time for an interactive user interface.

Fig. 7 – Bitbucket with Mesh-based repository store

https://git-scm.com/docs/git-for-each-ref
https://git-scm.com/docs/git-pack-refs

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 17

Request routing

A request for a given repository can be routed to potentially any Mesh node
that hosts a replica of that repository. When a client, either a web UI client
or a Git client connecting via SSH or HTTP, makes a request, they’re connected
to one of the nodes of the primary cluster that runs the core Bitbucket
application.

These connections are initially handled by the load balancer, which then
proxies those connections through to one of the cluster nodes. Web UI
connections generally require session stickiness so subsequent requests
for the same session are routed
through to the same node, although
the initial connection is typically
randomly assigned to a node. So,
given a large number of users, the
load from web users will be roughly
uniformly distributed. However,
connections from Git clients don’t
require stickiness, and a user
performing multiple clones can
see each request connected to a
different cluster node.

While processing a request, the
cluster node handling the request
may need to query the database for
information, and it may need to read or write to the Git repository. This need is
obvious for Git operations such as clone, fetch, or push. However, even the web
UI connections often require information from the Git repository.

Before making an RPC, a Mesh node must be selected to fulfill the request.
This node:

	· Must host a replica of the repository that is the target of the request.

	· Must be online and not draining. Draining means the system is trying to
quiesce the node so it can be taken offline, perhaps for maintenance.

	· The replica must be consistent. A replica may be inconsistent either
because the node missed one or more writes while it was offline or
because the node failed to replicate a write.

Example

 For example, the user may be
asking for a list of all branches,
viewing the contents of a file,
or comparing the diff between
two branches. These needs are
fulfilled by the Mesh subsystem,
with the application running
on the cluster, making gRPC
remote procedure calls on the
Mesh nodes.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 18

Given the set of Mesh nodes that match the above criteria, the request will be
assigned to a Mesh node randomly, with the set of all requests expected to be
uniformly distributed across eligible Mesh nodes, which should help with load
balancing and performance.

Mesh Deployment Considerations
A traditional (pre-Mesh) clustered Bitbucket deployment is comprised of the
following components:

	· One or more Bitbucket Application nodes

	· Load balancer

	· Relational database management system (RDBMS)

	· OpenSearch instance

	· Network filesystem (NFS)

Enhancing this deployment to include Mesh requires the addition of a
minimum of three Mesh nodes. A minimal clustered Bitbucket deployment
with Mesh can be seen in Fig. 8.

Fig. 8 – Minimal clustered Bitbucket Data Center deployment with Mesh

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 19

A minimum of three Mesh nodes must be deployed because this is the
minimum supported replication factor required for the system to sustain
a failure of one node and still form a write quorum. Any number of Mesh
nodes three or greater can still be deployed, as this may be needed to scale
processing, storage, or networking capacity.

It should be noted at this point that the application running on the Mesh
nodes isn’t the normal Bitbucket Java application, which we’ll call the core
Bitbucket application from here onwards. Rather, a new application is installed
on the Mesh nodes – we’ll call it the Mesh application. This new application is
a gRPC server that provides remote procedure calls (RPCs) to read, write, and
manage the Git repositories managed by the Mesh application.

On the surface, it might appear that once the repository data is migrated
to the Mesh nodes, the NFS server could potentially be removed. The NFS
server is still necessary and continues to host non-Git data. However, once
all repositories have been migrated to Mesh, many of the strict performance
requirements Bitbucket sets for the shared filesystem are no longer present.

This means:

	· The requirement to use NFSv3 can be relaxed to permit NFSv4 usage.
Historically, NFSv4 wasn’t supported as it requires more round trips
for the same operation when compared to NFSv3, which resulted in
inferior performance.

	· Cloud-managed NFS filesystems such as AWS Elastic Filesystem (EFS)
can be utilized.

	· Potentially, in the future, non-NFS shared filesystems may be available
for utilization. This is subject to further testing to ensure the basic
requirements are still met, including POSIX compatibility, delete on the
last close, locking, etc.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 20

Sidecar

The Git source code management (SCM) logic, which was part of the
core Bitbucket application before Bitbucket 8.0, has been extracted to the
Mesh application.

Specifically, when upgrading Bitbucket to 8.0+, even repositories hosted on the
NFS repository use a sliver of the Mesh code path. Before Bitbucket 8.0, the
Git SCM logic existed in the core Bitbucket application. It was responsible for
forking Git worker processes (see Fig. 1). In Bitbucket 8.0, this Git SCM logic is
factored out of the core Bitbucket process into a separate process that we call
the Sidecar (see Fig. 9.)

This sidecar is the same application as Bitbucket Mesh, but only a small subset
of the functionality is used in this role. Think of it as a Mesh-lite process. It’s
used for repository access but doesn’t leverage concepts such as replication
or partitions.

Where previously the Bitbucket application made Java method calls to access
process-local SCM code, now it makes a gRPC call to the sidecar process to do
the same. The primary areas where the administrator needs to be aware of the
existence of the sidecar are monitoring and troubleshooting.

The existence of the sidecar process doesn’t constitute “using Mesh.” The
sidecar process isn’t listed in Mesh nodes in the administration UI.

Fig. 9 – Bitbucket with sidecar process

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 21

Authentication

The core Bitbucket application communicates with the Mesh process via gRPC
(general remote procedure call to connect services). The Mesh application acts
as the gRPC server and the core Bitbucket application acts as the gRPC client.
Mesh application processes also communicate amongst each other via gRPC,
primarily for tasks such as write replication and repairs.

These RPCs are authenticated using JWT. Each request has a JWT auth token
with claims signed by the caller and each response has a token signed by the
responder. A 2048-bit RSA signing key pair exists for each Mesh node, and one
exists for the control plane, that is for the core Bitbucket application. The key
exchange happens when a Mesh node is first added to the system.

Complexity

A typical Bitbucket Server instance is relatively simple. It consists of the
Bitbucket Java application plus a database, filesystem, and an OpenSearch
instance. This is made slightly more complex when an instance is deployed
in a cluster since there are multiple instances of the Bitbucket Java application
running.

Mesh complicates this, with a second Java application type needing
deployment (the Mesh application) and the additional core state existing on
multiple Mesh nodes. The following activities become more complex:

	· Deployment

	· Bitbucket version upgrades

	· Monitoring

	· Backup and restore

	· Troubleshooting

For small Bitbucket instances that wouldn’t benefit from any of the
performance, resilience, or scalability benefits that come with Mesh, migrating
to a Mesh-based deployment may not be desirable. Instead, the NFS-based Git
repository storage subsystem may better suit such instances.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 22

Additional storage capacity requirement

With the traditional NFS-based repository store, there’s exactly one copy of
each repository on disk. Filesystems may also be configured as RAID1, RAID5,
or similar, which incurs some additional storage space.

Bitbucket Mesh provides increased scalability, performance, and resilience,
but at the cost of additional disk storage requirements. Bitbucket Mesh
uses replication of repositories to achieve these goals, and with a minimum
replication factor of three, the minimum disk storage requirement is also
increased by a factor of three.

This doesn’t necessarily translate to a linear (for example, three-fold) increase
in storage pricing. Most Bitbucket deployments that are built for high
availability rely on expensive “NFS appliances” for highly scalable and reliable
storage. Bitbucket Mesh permits building out horizontally using usually the
most cost-effective internal storage, direct attached storage (DAS), or storage
area network (SAN) based storage.

Example

If you have 500 GB of repository data on NFS, deploying three Mesh nodes
with a replication factor of three, each Mesh node will require 500 GB of
storage for these repositories. This is a total of 1500 GB of storage.

It’s quite challenging to determine the exact amount of disk space required.
Take the same 500 GB of repository data on NFS, with a replication factor of
three, and five Mesh nodes. In this case, the total storage requirement is also
1500 GB but distributed over five Mesh nodes. Assuming a large number of
repositories of the same size, 1500 GB could be divided by five, indicating a
storage requirement of 300 GB per Mesh node.

In reality, not all repositories are of equal size. In the above example, if the
size of one repository was 400 GB, three of the five Mesh nodes would
require at least 400 GB of storage.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 23

Multiple availability zone deployments

The concept of an availability zone is a common cloud term used to describe
a data center where all resources share a physical location and often cooling,
power, and other core subsystems. A multiple availability zone deployment
leverages two or more of these availability zones to provide additional
redundancy. The system is then more resilient in the face of power, cooling, and
other hardware failures, as well as to events such as fires and floods.

As described previously, Bitbucket Mesh supports the concept of multi-
availability zone deployment. This wasn’t possible with the NFS-based
repository store since the NFS server could only exist in a single location
and thus, be a single point of failure. Consequently, deploying the Bitbucket
application nodes in multiple availability zones didn’t increase resilience.
Furthermore, the low filesystem I/O latency Bitbucket and Git require
means that even if a multi-availability zone NFS service was available, the
performance of this deployment would be unacceptable.

A successful multi-availability zone deployment of Bitbucket Mesh requires
the following:

	· The ability to ensure the additional latency incurred for the RPCs is
acceptable.

	· Replicas are distributed across Mesh nodes so that they exist in a
sufficient number of availability zones to permit a single availability zone
failure, while still having enough replicas to form a write quorum.

The first requirement can be met by ensuring the round trip latency between
Mesh nodes is under five milliseconds (ms), and similarly, the round trip latency
between the Bitbucket application nodes and the Mesh nodes is under five
ms. This can be measured with an Internet Control Message Protocol (ICMP)
ping between nodes. This figure of five ms implies that these availability zones
must be relatively close geographically, generally within the same city. In cloud
terminology, this also means that while multi-availability zone deployments
are viable, multi-region deployments aren’t. The typical latency between
regions is often tens of milliseconds and often over one hundred milliseconds.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 24

The second requirement can be met when nodes are distributed between
availability zones so that the loss of one availability zone leaves a sufficient
number of replicas for a write to succeed. The writes succeed on a quorum of
replicas, where “n” is the replication factor a quorum of (n/2 + 1) replicas must
be available. Note that the result of the division should be rounded down. For
example, with a replication factor of three, a minimum of two replicas must be
present for a write to succeed.

Example

In a simple scenario with a replication factor of three and three Mesh nodes
each in separate availability zones, it’s easy to check how an outage in one
availability zone would still result in two replicas being available. See Fig. 10.

Fig. 10 – Redundant multi-availability zone deployment

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 25

Example

However, a scenario with a replication factor of three and only two
availability zones results in a non-redundant deployment. See Fig. 11, where a
failure of availability zone 1 would mean repository 1 only has one remaining
replica, and thus a quorum can’t be achieved and writes would be rejected.
Reads would be successful via node 3.

However, having a redundant deployment isn’t sufficient in many cases.
Bitbucket must be aware of availability zones and the replica placement
aware of availability zones must be implemented.

Fig. 11 – Non-redundant multi-availability zone deployment

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 26

Example

Take the scenario in Fig. 12. For a replication factor of three, each replica can
be placed in a separate availability zone. However, as illustrated, this hasn’t
happened. An outage in any availability zone will result in one of the three
repositories not being able to form a quorum for writing.

Fig. 12 – Multi availability zone deployment with non-redundant replica placement

Achieving a redundant multi-availability zone deployment must be
implemented manually. Even with the most pessimistic replica placement,
the loss of a single availability zone would still permit a write quorum to be
formed. A simple fix is to increase the replication factor.

Example

The case in Fig. 12 can be made resilient by increasing the replication factor
from the default three to at least five.

The simplest approach may be to ensure that each Mesh node resides in
its own availability zone, with no other Mesh nodes residing in the same
availability zone.

SCALE YOUR ORGANIZATION’S REPOSITORIES WITH BITBUCKET MESH 27

Auto-scaling

Bitbucket Mesh can scale up by adding more nodes and scale down by
removing nodes. This can be a desirable characteristic for a Bitbucket
deployment since the load is often very spiky. These spikes occur due to the
load from build systems that can execute hundreds of build jobs in response
to a change being pushed to Bitbucket. These build jobs can result in hundreds
of Git clones or fetch requests almost simultaneously.

In many cloud environments, it’s desirable to implement automatic scaling or
auto-scaling. This is a method of scaling up and down automatically, based
on continuous monitoring of the load combined with some logic that decides
when to add or remove nodes.

Auto-scaling works well for mostly stateless applications. However, Mesh is
very stateful by definition. Adding a Mesh node so that it can service requests
involves rebalancing, as mentioned above. This process migrates some
replicas from existing Mesh nodes to new Mesh nodes. Likewise, deleting a
Mesh node also involves rebalancing, where replicas are evacuated to the
remaining Mesh nodes. So, the configured replication factor is maintained after
the node is deleted. These processes can take several minutes or even hours
for larger systems. Such timeframes are somewhat incompatible with the
demand for auto-scaling because the bursts of traffic that auto-scaling aims
to handle have a duration of about five to 20 minutes typically. So, by the time
a Mesh node is available to service requests, the spike may have subsided.

Furthermore, when adding a new node, populating it with repository replicas
places a load on the existing nodes, as these are the source of the data being
copied. So, right at the moment, the system is trying to better handle a load
spike while replication taxes the system, reducing its capacity to handle
user-driven requests. Consequently, it’s unlikely that fine-grained auto-scaling
would be beneficial, so it wasn’t a design goal for Bitbucket Mesh.

©2023 Atlassian. All Rights Reserved. CSD-6601_DRD-11/23

Conclusion
With Bitbucket Mesh, we look to continue to support development teams as
their repositories grow or as they require more reliability and performance.

If you think Bitbucket Mesh is right for your organization, upgrade to Bitbucket
8.0+ and check out the following resources in Atlassian Support:

Bitbucket Mesh

Set up and configure Mesh nodes

Migrate repositories to Bitbucket Mesh

https://confluence.atlassian.com/bitbucketserver/bitbucket-mesh-1128304351.html
https://confluence.atlassian.com/bitbucketserver/set-up-and-configure-mesh-nodes-1128304356.html
https://confluence.atlassian.com/bitbucketserver/migrate-repositories-to-bitbucket-mesh-1128304358.html

